Енергийноефективно саниране на сгради

01.05.2012, Брой 2/2012 / Технически статии / Енергийна ефективност

 

Част 1. Особености при полагането на външна изолация

Санирането е процес, при който значително се подобряват както външният вид, така и енергийни характеристики на сградите. Необходимостта от саниране е явна за голяма част от сградния фонд в страната, което в особена сила важи за панелните блокове. С оглед насърчаване на собствениците на подобни сгради да предприемат мерки за тяхното саниране, в момента е в сила европейски проект по линия на Оперативна програма “Регионално развитие”, с бюджет от около 63 млн. лева.

Известно е, че санирането на сградите носи редица ползи за техните обитатели като подобряване на шумоизолацията, намаляване на енергийните разходи следствие от топлоизолирането, подобряване на комфорта и т. н. В същото време, санирането на сградата е инвестиция, която с течение на времето се изплаща.

Обикновено, енергийното саниране обхваща цялостния процес на обновление и реновиране на сградата с цел повишаване на нейната енергийната ефективност, което включва цялостен ремонт и възстановяване. В това число ремонт на покрива, който се явява един от основните източници на загуби на топлина, подмяна на сградните инсталации, подмяна на дограмата и т. н.





Топлоизолирането
Основен момент при санирането се явява полагането на подходяща топлоизолация. Необходимо е избраният топлоизолационен материал като вид, дебелина и т. н. да отговаря на конкретното приложение. Сред основните изисквания при топлоизолирането на фасади е използването на материали, които взаимно се допълват и са произведени конкретно за полагане на фасадна топлоизолация. Необходимо е използването и на специални лепила, предназначени за поставянето на топлоизолация.
При проектирането на топлозащитата на ограждащите елементи обикновено се взимат предвид някои основни топлотехнически свойства на материалите и на ограждащите елементи. Сред тях са способността на телата да поглъщат и да предават топлина, да я пропускат и да я акумулират, както и да я провеждат през себе си. 




Коефициент на топлопроводност
Свойството на телата да провеждат топлина през себе си при наличие на температурна разлика от двете им срещуположни стени е познато като топлопроводност. Количеството топлина, което се провежда през едно тяло, обикновено се определя с израза Q = lA(DTZ/a) и се измерва в [J]. В израза с l е обозначен коефициентът на топлопроводност, А е площта, DT - температурната разлика, а с Z е отбелязано времето.

Коефициентът на топлопроводност е една от основните характеристики на топлоизолационните материали. Той се явява физична характеристика на веществата и зависи от техния вид, структура, температура и т. н. Физическата му същност се изразява с количеството топлина, което се провежда от материал с дебелина 1 m, през 1 m2 площ, за 1 s и при температурна разлика 1 К. Съответно, за материалите с добри топлоизолационни свойства, коефициентът на топлопроводност обикновено се движи в диапазона от 0,03 до към 0,18 W/mK. За топлоизолационните материали стойността на l се влияе и от обемната плътност, температурата и влажността на материала.

От своя страна, топлопредаването е процес на пренасяне на топлина, който обикновено се свързва с движението на флуид около твърда повърхност. Сред факторите, които оказват влияние върху топлообмена, са температурните условия, геометрията на тялото, физичните свойства на флуида и други. За определяне на количеството топлина, което се предава се използва изразът Q = aADTZ, J, в който a е коефициентът на топлопредаване. При сградите техните ограждащи елементи контактуват с въздуха, поради което коефициентът на топлопредаване е количеството топлина, което се предава от въздуха на стената. Той зависи едновременно от топлопредаването чрез излъчване и конвекция.

Способността на телата да акумулират топлина е пряко свързана с топлоустойчивостта и топлинния комфорт на ограждащите елементи.


 

Съпротивление на топлопреминаване
Топлопреминаването е свойството на материалите да пропускат топлина през себе си, при наличието на температурна разлика между двете им страни. За определяне на количеството топлина, преминало през ограждащите елементи за даден интервал от време, обикновено се използва изразът Q = uADTZ, J, в който с u е обозначен коефициентът на топлопреминаване на ограждащия елемент, W/m2K. Добре е да се има предвид, че в случая се приема, че режимът на преминаване на топлинния поток през ограждащия елемент е стационарен. Грешката е в рамките на ±10%. В практиката широко използвана е реципрочната стойност на коефициента на топлопреминаване, позната като съпротивление на топлопреминаване R [m2K/W]. Съответно, колкото по-висока е стойността му, толкова по добра е изолацията и не пропуска топлина. Редица фактори оказват влияние върху коефициента на съпротивление на изолацията, сред които са видът на изолацията, дебелината и други.

Статията продължава в следващия брой на сп. ТД Инсталации с втора част, която разглежда топлоизолационните материали и постигането на висока ефективност на изолация.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Мрежови видеорекордери (NVR)Технически статии

Мрежови видеорекордери (NVR)

Мрежовите видеорекордери (Network video recorder, NVR) са специализирани системи, използвани все по-често в сградните решения за сигурност и видеонаблюдение поради множеството им предимства в сравнение с популярните дигитални видеорекордери (DVR).

Мрежовите видеорекордери се отличават от DVR системите основно по това, че входящият сигнал постъпва чрез мрежова връзка вместо посредством директна връзка към карта или тунер за видеозапис.

Шумозаглушители за ОВК инсталацииТехнически статии

Шумозаглушители за ОВК инсталации

Сградните ОВК инсталации могат да се превърнат в източник на силен и неприятен шум по време на експлоатация. Ето защо контролът на шума е първостепенна грижа за проектантите и инсталаторите на ОВК системи в хотели, жилищни, търговски, обществени и промишлени сгради. За целта се използват т. нар. шумозаглушители.

Шумозаглушителите са интегрална част от сградните ОВК системи и традиционно се инсталират заедно с останалите компоненти. Конструкцията им включва корпус (обикновено от неръждаема стомана) и вътрешни ядра от звукоабсорбираща изолация.

Интелигентно аварийно осветлениеТехнически статии

Интелигентно аварийно осветление

Аварийното осветление от ново поколение разполага с допълнителен набор от функции, който не само оптимизира мониторинга и поддръжката му, но позволява и интегрирането му в цялостни платформи за сградна автоматизация и консолидираното му управление с останалите сградни системи и услуги.

На пазара вече се предлагат интелигентни системи за аварийно осветление, които елиминират нуждата от времеемка и сложна конвенционална инспекция.

Системи за управление на опасноститеТехнически статии

Системи за управление на опасностите

С нарастващата автоматизация на сградните системи и услуги и тяхното масово консолидиране в единни платформи за сграден мениджмънт все по-популярни стават комбинираните решения за контрол на рисковете, познати като системи за управление на опасностите (Danger management systems, DMS)

Съвременни тенденции в интелигентното сградно осветлениеТехнически статии

Съвременни тенденции в интелигентното сградно осветление

Решенията в областта на интелигентното осветление непрекъснато се развиват и еволюират в синхрон с изискванията на устройствата и приложенията от най-ново поколение, разработени за непрекъснато разрастващата се IoT (Internet of Things) екосистема

Решения за воден мониторинг в интелигентни домовеТехнически статии

Решения за воден мониторинг в интелигентни домове

Водният мениджмънт в един умен дом се осъществява с помощта на различни типове сензори и системи, които измерват потреблението, регистрират течове, проверяват качеството на питейната вода и помагат за подобряване качеството на живот, намаляване на сметките и предотвратяване на аварийни ситуации, застрашаващи безопасността на обитателите и сградните активи


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2019 Всички права запазени. Карта на сайта.

Top