Енергийноефективно саниране на сгради
01.05.2012, Брой 2/2012 / Техническа статия / Енергийна ефективност
Част 1. Особености при полагането на външна изолация
Санирането е процес, при който значително се подобряват както външният вид, така и енергийни характеристики на сградите. Необходимостта от саниране е явна за голяма част от сградния фонд в страната, което в особена сила важи за панелните блокове. С оглед насърчаване на собствениците на подобни сгради да предприемат мерки за тяхното саниране, в момента е в сила европейски проект по линия на Оперативна програма “Регионално развитие”, с бюджет от около 63 млн. лева.
Известно е, че санирането на сградите носи редица ползи за техните обитатели като подобряване на шумоизолацията, намаляване на енергийните разходи следствие от топлоизолирането, подобряване на комфорта и т. н. В същото време, санирането на сградата е инвестиция, която с течение на времето се изплаща.
Обикновено, енергийното саниране обхваща цялостния процес на обновление и реновиране на сградата с цел повишаване на нейната енергийната ефективност, което включва цялостен ремонт и възстановяване. В това число ремонт на покрива, който се явява един от основните източници на загуби на топлина, подмяна на сградните инсталации, подмяна на дограмата и т. н.
Топлоизолирането
Основен момент при санирането се явява полагането на подходяща топлоизолация. Необходимо е избраният топлоизолационен материал като вид, дебелина и т. н. да отговаря на конкретното приложение. Сред основните изисквания при топлоизолирането на фасади е използването на материали, които взаимно се допълват и са произведени конкретно за полагане на фасадна топлоизолация. Необходимо е използването и на специални лепила, предназначени за поставянето на топлоизолация.
При проектирането на топлозащитата на ограждащите елементи обикновено се взимат предвид някои основни топлотехнически свойства на материалите и на ограждащите елементи. Сред тях са способността на телата да поглъщат и да предават топлина, да я пропускат и да я акумулират, както и да я провеждат през себе си.
Коефициент на топлопроводност
Свойството на телата да провеждат топлина през себе си при наличие на температурна разлика от двете им срещуположни стени е познато като топлопроводност. Количеството топлина, което се провежда през едно тяло, обикновено се определя с израза Q = lA(DTZ/a) и се измерва в [J]. В израза с l е обозначен коефициентът на топлопроводност, А е площта, DT - температурната разлика, а с Z е отбелязано времето.
Коефициентът на топлопроводност е една от основните характеристики на топлоизолационните материали. Той се явява физична характеристика на веществата и зависи от техния вид, структура, температура и т. н. Физическата му същност се изразява с количеството топлина, което се провежда от материал с дебелина 1 m, през 1 m2 площ, за 1 s и при температурна разлика 1 К. Съответно, за материалите с добри топлоизолационни свойства, коефициентът на топлопроводност обикновено се движи в диапазона от 0,03 до към 0,18 W/mK. За топлоизолационните материали стойността на l се влияе и от обемната плътност, температурата и влажността на материала.
От своя страна, топлопредаването е процес на пренасяне на топлина, който обикновено се свързва с движението на флуид около твърда повърхност. Сред факторите, които оказват влияние върху топлообмена, са температурните условия, геометрията на тялото, физичните свойства на флуида и други. За определяне на количеството топлина, което се предава се използва изразът Q = aADTZ, J, в който a е коефициентът на топлопредаване. При сградите техните ограждащи елементи контактуват с въздуха, поради което коефициентът на топлопредаване е количеството топлина, което се предава от въздуха на стената. Той зависи едновременно от топлопредаването чрез излъчване и конвекция.
Способността на телата да акумулират топлина е пряко свързана с топлоустойчивостта и топлинния комфорт на ограждащите елементи.
Съпротивление на топлопреминаване
Топлопреминаването е свойството на материалите да пропускат топлина през себе си, при наличието на температурна разлика между двете им страни. За определяне на количеството топлина, преминало през ограждащите елементи за даден интервал от време, обикновено се използва изразът Q = uADTZ, J, в който с u е обозначен коефициентът на топлопреминаване на ограждащия елемент, W/m2K. Добре е да се има предвид, че в случая се приема, че режимът на преминаване на топлинния поток през ограждащия елемент е стационарен. Грешката е в рамките на ±10%. В практиката широко използвана е реципрочната стойност на коефициента на топлопреминаване, позната като съпротивление на топлопреминаване R [m2K/W]. Съответно, колкото по-висока е стойността му, толкова по добра е изолацията и не пропуска топлина. Редица фактори оказват влияние върху коефициента на съпротивление на изолацията, сред които са видът на изолацията, дебелината и други.
Статията продължава в следващия брой на сп. ТД Инсталации с втора част, която разглежда топлоизолационните материали и постигането на висока ефективност на изолация.
Интелигентни сградни технологии за постигане на нетни нулеви емисии
С увеличаване на стремежа за постигане на нетни нулеви емисии до 2050 г., предприемането на мерки вече няма да е ограничено само до големите бизнеси. За много компании това ще наложи повишен фокус върху стратегии за енергиен мениджмънт и по-голяма необходимост от възможности за демонстриране на прогреса спрямо целите.
Димоотводни системи
Ако са планирани правилно, тези системи могат да ограничат достигането на максималната степен на щетите или дори цялостно да ги предотвратят. В зависимост от вида на сградата при оразмеряването им трябва да се вземат предвид редица законодателни принципи, регулации и препоръки.
Фасадни соларни инсталации
Фасадните соларни системи осигуряват множество предимства по посока повишаване на енергийната ефективност на модерните сградни конструкции. В допълнение към възможности за гъвкаво генериране на енергия за собственото потребление на сградата, те намаляват нивата на шум от външната среда, допълнително оптимизират изолацията и топлинния профил и позволяват креативно изпълнение на остъкляването. Специални тънкослойни фотоволтаични модули и цялостни соларни инсталации могат да бъдат интегрирани във фасадите както на нови, така и на съществуващи сгради.
Технологични решения за платени паркинги
Системата за контрол на достъпа до паркинга е решение, което позволява на собствениците на платени паркинги и гаражи да управляват съответното съоръжение, да ограничават достъпа до него и да реализират приходи. На пазара се предлага разнообразие от различни решения и комбинации за оптимизиране на достъпа до всеки един паркинг.
Противопожарни помпи
Противопожарните помпи са ключов елемент от системите за пожарогасене в сгради, а от ефективната им работа зависи надеждността на цялата пожарна защита на обекта. Неслучайно често биват определяни като "сърцето" на всяка пожарна инсталация.
Системи за контрол на работното време
Някои от най-модерните системи използват GPS данни за автоматично регистриране на служителите в зависимост от близостта им до предварително зададена геолокация. Тези системи предлагат няколко ползи – елиминира се рискът служителят да забрави да се регистрира, както и нуждата да се отиде до точно определен терминал.