Компресорни термопомпи

01.10.2008, Брой 8/2008 / Технически статии / ОВК оборудване

 

Оптималните параметри на микроклимата са от определящо значение за успеха на едно заведение
Възможностите на съвременното строителство, нестандартните и оригинални решения в интериорния дизайн могат да превърнат всяка сграда и помещение в нея в уникално място. А именно добре изпълненият и подходящ интериор, от една страна, и, разбира се, добрата кухня са основни инструменти за успех на заведенията за обществено хранене.


› Реклама



обратен кръгов цикъл на Карно
При този цикъл механичната работа пренася топлина, като едновременно с това повишава температурното й ниво. Получената по-висока температура е следствие на сгъстяване на работното вещество (газове или пара) в компресор. Като показател за ефективността на всеки кръгов процес се използва отношението на полученото количество топлина или студ към изразходваната работа.
Съществуват различни признаци, по които се класифицират термопомпите. Основните са вид и агрегатно състояние на енергоносителя, вид на топлоносителя, предназначение на консуматора и принцип на действие. Класификацията, основаваща се на базата на агрегатното състояние на енергоносителя, е в зависимост от работното тяло, подвеждащо топлина в изпарителя и работното тяло, приемащо топлина в кондензатора. Най-често срещани са термопомпите: въздух-въздух, въздух-вода, вода-въздух, вода-вода, земя-вода.
Според вида на източника на енергия, термопомпите се определят като термопомпи, оползотворяващи енергия на околния въздух, водоеми, земни пластове, отпадъчна и технологична топлина, слънчева енергия и геотермална енергия. В зависимост от предназначението си, термопомпите са предназначени за отопление, за производство на гореща вода, за изсушаване на въздух, а също и за технологични цели. Според принципа на действие, се класифицират като компресорни, сорбционни, компресорно-сорбционни, термоелектрически, пароежекторни и студеногазови. В практиката най-голямо приложение намират компресорните и сорбционните термопомпи.
Работните цикли на компресорните термопомпи са отворени и затворени.


› Реклама


Термосгъстяване (отворени цикли)
При този процес парите от технологичния процес се засмукват директно от компресора, където се сгъстяват. Повишили своето налягане и температура, те отново отдават топлината си на кондензация в технологичния процес. За компресорните термопомпи не са характерни загуби от процеса на дроселиране. Температурната разлика DТ е равна на Тк - То, където Тк е температурата на кондензация (температура на отопляваната среда), а То е температурата на изпарение (температура на охлажданата среда) и покрива само термичните съпротивления при топлообмена.
Топлинните баланси при този процес са топлинен поток при изпарение (Qo), топлинен поток при кондензация (Qk), подведена мощност към компресора (L). Коефициентът на трансформация j е отношението на топлинния поток при кондензация към подведената мощност към компресора.
Теоретично, коефициентът на трансформация може да достигне стойности j >> 10 - 20, поради малките стойности на разликите в температурите и наляганията при кондензация и изпарение. За да се получи действителният коефициент на трансформация, теоретичният се умножава с коефициента h, чийто стойности варират в диапазона 0,55 - 0,70, в зависимост от производителността на изпарителната инсталация.
С помощта на коефициента h, ориентировъчно се отчитат механичните загуби в компресора и електродвигателя, както и топлинните загуби през изолацията.


 

Затворени цикли или т.нар. термопомпени цикли
Процесът, който протича в компресорните термопомпи, е сух студенопарен кръгов цикъл, който теоретично се нарича още сравнителен обратен кръгов цикъл. Теоретично, термодинамичните процеси, които протичат при този цикъл, са четири. Първият е процес на сгъстяване на работното тяло в компресора, с помощта на внесена отвън работа. Вторият процес е процес на кондензация, при който се отвежда топлината на кондензация чрез кондензация на работното тяло, като налягането се запазва постоянно. След кондензатора работното тяло преминава през дроселиращ вентил, вследствие на което постъпва в изпарителя с понижено налягане. В изпарителя, с помощта на подвеждане на топлина, работното тяло се изпарява, като налягането се запазва постоянно.
В действителност, между теоретичния и действителния компресорен цикъл има няколко разлики. При реално протичащия процес сгъстяването на хладилния агент в компресора е необратим процес. Характерни за него са: загуби при дроселиране на хладилния агент, загуби от триене, загуби в процеса на засмукване от топлообмена, между хладилния агент и стените на цилиндъра, както и загуби вследствие на крайната температурна разлика, между хладилния агент и топлоносителя, в процесите на изпарение и кондензация.
Теоретичният коефициент на трансформация jth се изразява с отношението на специфичната топлинна мощност qk към специфичния разход на енергия l, или отношението на масовия дебит на работното тяло Qk към разхода на енергия L.

Енергийните загуби повишават топлопроизводството
При компресорните термопомпи енергийните загуби, освен че увеличават разхода на енергия, водят и до повишаване на полезното топлопроизводство. Затова при изчисляване на действителния коефициент на трансформация трябва да се вземат предвид особеностите на компресорната термопомпа, т.е индикаторният, механичният и електрическият КПД както на компресора, така и на електродвигателя. Степента на термодинамично съвършенство h се изразява с отношението на действителния коефициент на трансформация към теоретичния, като h < 1.

Компресорни термопомпени агрегати
Представляват готови за монтаж съоръжения, включващи компресор със задвижване, кондензатор, изпарител, тръбни връзки между тях, пулт за управление, предпазни и контролно-регулиращи съоръжения. Според вида на двигателя, задвижващ компресора, тази вид термопомпени агрегати се определят като електрически, газови и дизелови. А според типа на компресора, се класифицират като бутални, спирални, винтови и турбокомпресорни.
Типът на компресора определя и максималната мощност на термопомпените агрегати. С най-ниска мощност са спиралните компресори - от 10 до 200 - 300 kW. Турбокомпресорите се отличават с най-голяма мощност в диапазона от 600 - 900 kW до 12 - 17 MW. За буталните компресори мощността е от 2,0 до 400 - 600 kW, докато за винтовите компресори мощността варира от 200 - 300 kW до 2,7 - 4,0 MW.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Мрежови видеорекордери (NVR)Технически статии

Мрежови видеорекордери (NVR)

Мрежовите видеорекордери (Network video recorder, NVR) са специализирани системи, използвани все по-често в сградните решения за сигурност и видеонаблюдение поради множеството им предимства в сравнение с популярните дигитални видеорекордери (DVR).

Мрежовите видеорекордери се отличават от DVR системите основно по това, че входящият сигнал постъпва чрез мрежова връзка вместо посредством директна връзка към карта или тунер за видеозапис.

Шумозаглушители за ОВК инсталацииТехнически статии

Шумозаглушители за ОВК инсталации

Сградните ОВК инсталации могат да се превърнат в източник на силен и неприятен шум по време на експлоатация. Ето защо контролът на шума е първостепенна грижа за проектантите и инсталаторите на ОВК системи в хотели, жилищни, търговски, обществени и промишлени сгради. За целта се използват т. нар. шумозаглушители.

Шумозаглушителите са интегрална част от сградните ОВК системи и традиционно се инсталират заедно с останалите компоненти. Конструкцията им включва корпус (обикновено от неръждаема стомана) и вътрешни ядра от звукоабсорбираща изолация.

Интелигентно аварийно осветлениеТехнически статии

Интелигентно аварийно осветление

Аварийното осветление от ново поколение разполага с допълнителен набор от функции, който не само оптимизира мониторинга и поддръжката му, но позволява и интегрирането му в цялостни платформи за сградна автоматизация и консолидираното му управление с останалите сградни системи и услуги.

На пазара вече се предлагат интелигентни системи за аварийно осветление, които елиминират нуждата от времеемка и сложна конвенционална инспекция.

Системи за управление на опасноститеТехнически статии

Системи за управление на опасностите

С нарастващата автоматизация на сградните системи и услуги и тяхното масово консолидиране в единни платформи за сграден мениджмънт все по-популярни стават комбинираните решения за контрол на рисковете, познати като системи за управление на опасностите (Danger management systems, DMS)

Съвременни тенденции в интелигентното сградно осветлениеТехнически статии

Съвременни тенденции в интелигентното сградно осветление

Решенията в областта на интелигентното осветление непрекъснато се развиват и еволюират в синхрон с изискванията на устройствата и приложенията от най-ново поколение, разработени за непрекъснато разрастващата се IoT (Internet of Things) екосистема

Решения за воден мониторинг в интелигентни домовеТехнически статии

Решения за воден мониторинг в интелигентни домове

Водният мениджмънт в един умен дом се осъществява с помощта на различни типове сензори и системи, които измерват потреблението, регистрират течове, проверяват качеството на питейната вода и помагат за подобряване качеството на живот, намаляване на сметките и предотвратяване на аварийни ситуации, застрашаващи безопасността на обитателите и сградните активи


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2019 Всички права запазени. Карта на сайта.

Top