Компресорни термопомпи

01.10.2008, Брой 8/2008 / Технически статии / ОВК оборудване

 

Оптималните параметри на микроклимата са от определящо значение за успеха на едно заведение
Възможностите на съвременното строителство, нестандартните и оригинални решения в интериорния дизайн могат да превърнат всяка сграда и помещение в нея в уникално място. А именно добре изпълненият и подходящ интериор, от една страна, и, разбира се, добрата кухня са основни инструменти за успех на заведенията за обществено хранене.





обратен кръгов цикъл на Карно
При този цикъл механичната работа пренася топлина, като едновременно с това повишава температурното й ниво. Получената по-висока температура е следствие на сгъстяване на работното вещество (газове или пара) в компресор. Като показател за ефективността на всеки кръгов процес се използва отношението на полученото количество топлина или студ към изразходваната работа.
Съществуват различни признаци, по които се класифицират термопомпите. Основните са вид и агрегатно състояние на енергоносителя, вид на топлоносителя, предназначение на консуматора и принцип на действие. Класификацията, основаваща се на базата на агрегатното състояние на енергоносителя, е в зависимост от работното тяло, подвеждащо топлина в изпарителя и работното тяло, приемащо топлина в кондензатора. Най-често срещани са термопомпите: въздух-въздух, въздух-вода, вода-въздух, вода-вода, земя-вода.
Според вида на източника на енергия, термопомпите се определят като термопомпи, оползотворяващи енергия на околния въздух, водоеми, земни пластове, отпадъчна и технологична топлина, слънчева енергия и геотермална енергия. В зависимост от предназначението си, термопомпите са предназначени за отопление, за производство на гореща вода, за изсушаване на въздух, а също и за технологични цели. Според принципа на действие, се класифицират като компресорни, сорбционни, компресорно-сорбционни, термоелектрически, пароежекторни и студеногазови. В практиката най-голямо приложение намират компресорните и сорбционните термопомпи.
Работните цикли на компресорните термопомпи са отворени и затворени.




Термосгъстяване (отворени цикли)
При този процес парите от технологичния процес се засмукват директно от компресора, където се сгъстяват. Повишили своето налягане и температура, те отново отдават топлината си на кондензация в технологичния процес. За компресорните термопомпи не са характерни загуби от процеса на дроселиране. Температурната разлика DТ е равна на Тк - То, където Тк е температурата на кондензация (температура на отопляваната среда), а То е температурата на изпарение (температура на охлажданата среда) и покрива само термичните съпротивления при топлообмена.
Топлинните баланси при този процес са топлинен поток при изпарение (Qo), топлинен поток при кондензация (Qk), подведена мощност към компресора (L). Коефициентът на трансформация j е отношението на топлинния поток при кондензация към подведената мощност към компресора.
Теоретично, коефициентът на трансформация може да достигне стойности j >> 10 - 20, поради малките стойности на разликите в температурите и наляганията при кондензация и изпарение. За да се получи действителният коефициент на трансформация, теоретичният се умножава с коефициента h, чийто стойности варират в диапазона 0,55 - 0,70, в зависимост от производителността на изпарителната инсталация.
С помощта на коефициента h, ориентировъчно се отчитат механичните загуби в компресора и електродвигателя, както и топлинните загуби през изолацията.


 

Затворени цикли или т.нар. термопомпени цикли
Процесът, който протича в компресорните термопомпи, е сух студенопарен кръгов цикъл, който теоретично се нарича още сравнителен обратен кръгов цикъл. Теоретично, термодинамичните процеси, които протичат при този цикъл, са четири. Първият е процес на сгъстяване на работното тяло в компресора, с помощта на внесена отвън работа. Вторият процес е процес на кондензация, при който се отвежда топлината на кондензация чрез кондензация на работното тяло, като налягането се запазва постоянно. След кондензатора работното тяло преминава през дроселиращ вентил, вследствие на което постъпва в изпарителя с понижено налягане. В изпарителя, с помощта на подвеждане на топлина, работното тяло се изпарява, като налягането се запазва постоянно.
В действителност, между теоретичния и действителния компресорен цикъл има няколко разлики. При реално протичащия процес сгъстяването на хладилния агент в компресора е необратим процес. Характерни за него са: загуби при дроселиране на хладилния агент, загуби от триене, загуби в процеса на засмукване от топлообмена, между хладилния агент и стените на цилиндъра, както и загуби вследствие на крайната температурна разлика, между хладилния агент и топлоносителя, в процесите на изпарение и кондензация.
Теоретичният коефициент на трансформация jth се изразява с отношението на специфичната топлинна мощност qk към специфичния разход на енергия l, или отношението на масовия дебит на работното тяло Qk към разхода на енергия L.

Енергийните загуби повишават топлопроизводството
При компресорните термопомпи енергийните загуби, освен че увеличават разхода на енергия, водят и до повишаване на полезното топлопроизводство. Затова при изчисляване на действителния коефициент на трансформация трябва да се вземат предвид особеностите на компресорната термопомпа, т.е индикаторният, механичният и електрическият КПД както на компресора, така и на електродвигателя. Степента на термодинамично съвършенство h се изразява с отношението на действителния коефициент на трансформация към теоретичния, като h < 1.

Компресорни термопомпени агрегати
Представляват готови за монтаж съоръжения, включващи компресор със задвижване, кондензатор, изпарител, тръбни връзки между тях, пулт за управление, предпазни и контролно-регулиращи съоръжения. Според вида на двигателя, задвижващ компресора, тази вид термопомпени агрегати се определят като електрически, газови и дизелови. А според типа на компресора, се класифицират като бутални, спирални, винтови и турбокомпресорни.
Типът на компресора определя и максималната мощност на термопомпените агрегати. С най-ниска мощност са спиралните компресори - от 10 до 200 - 300 kW. Турбокомпресорите се отличават с най-голяма мощност в диапазона от 600 - 900 kW до 12 - 17 MW. За буталните компресори мощността е от 2,0 до 400 - 600 kW, докато за винтовите компресори мощността варира от 200 - 300 kW до 2,7 - 4,0 MW.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Модулиращи кондензни котлиТехнически статии

Модулиращи кондензни котли

Кондензните котли на природен газ с опция за модулиране на мощността позволяват повишаване ефективността на горене до 96%. Те предлагат избор от различни степени на интензивност на горене и разход на гориво, чрез които гъвкаво и ефективно могат да бъдат покрити променливите нужди от отопление или от комбинирано отопление с производство на битова гореща вода (БГВ) на една сграда.

Енергийна ефективност на осветлението в обществени сградиТехнически статии

Енергийна ефективност на осветлението в обществени сгради

Съвременните технологии в областта на осветлението предлагат множество опции за повишаване на енергийната ефективност на сгради. Сред най-популярните стъпки в тази посока са провеждането на енергийни одити, внедряването на системи за управление на осветлението и енергиен мениджмънт, както и подмяната на остарелите осветители с по-високоефективни варианти.

Сградна автоматизация в лечебни и здравни заведенияТехнически статии

Сградна автоматизация в лечебни и здравни заведения

Системите за сградна автоматизация (BAS) са неизменна част от модерните болнични и здравни заведения по цял свят. В допълнение към стандартните си функции, тези платформи притежават и богат асортимент от допълнителни възможности. Сред тях са инструменти за енергийна ефективност, поддържане на оптимален комфорт за пациентите и персонала и др.

Съвременни системи за периметрова охранаТехнически статии

Съвременни системи за периметрова охрана

Съвременните системи за периметрова охрана съчетават физически средства за сигурност и контрол на достъпа с модерни технологии, които допълват и подсилват функционалността им, улесняват управлението и гарантират надеждната им работа.

Благодарение на последните достижения при сензорите и видеонаблюдението в комбинация с иновации като изкуствен интелект и машинно обучение, периметровата охрана продължава да е сред най-търсените решения в областта на сигурността.

Системи за свободно охлаждане в сградни приложения (free cooling)Технически статии

Системи за свободно охлаждане в сградни приложения (free cooling)

Т. нар. свободно охлаждане (free cooling) е икономичен метод за интегриране на естествено охлаждане в сградната климатизация. Допълнителен източник на студ могат да бъдат например ниските външни температури, които да се използват за охлаждането на вода или друг работен флуид в ОВК системата.

Технологии за свободно охлаждане се прилагат във все повече инсталации за климатизация на жилищни, търговски и обществени помещения, както и в обекти с повишени изисквания за охлаждане като центрове за данни и сървърни стаи.

Сградни осветителни системи с гласово управлениеТехнически статии

Сградни осветителни системи с гласово управление

Много съвременни производители на осветителни компоненти и системи интегрират възможности за гласов контрол в продуктите си.

Тази пазарна тенденция е провокирана от възможностите за все по-тясно интегриране на осветлението в платформите за сградна и домашна автоматизация, както и от разширяването на технологичните модели за управление на интелигентната осветителна техника.


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2020 Всички права запазени. Карта на сайта.

Top