Охлаждане на LED в системи за осветление

01.12.2010, Брой 8/2010 / Техническа статия / Осветление

 

Методи и средства за осигуряване на оптимален температурен режим на светодиоди с висока яркост

В брой 7/2010 г. на списание ТД Инсталации, Оборудване, Инструменти, в материала “Влияние на температурата върху експлоатационните характеристики на LED в осветителни системи” бе изяснено, че при монтиране на мощните светодиоди върху платка, общото топлинно съпротивление кристал-околна среда RthJA играе важна роля за охлаждането, както и че то в значителна степен зависи от типа на печатната платка.

На фиг. 1 са показани структурите на три съвременни разновидности на платки. Тази от фиг. 1а използва класическата FR4 подложка, монтирана върху алуминиева пластина, като допълнителните метализирани отвори улесняват предаването на топлината. Топлинното съпротивление RthSB=(TS - TB)/PD между мястото на запояване на LED с температура TS и самата платка с температура ТВ е около 9 °C/W.
Масово разпространената платка МСРСВ (Metal Core PCB) e със структурата на фиг. 1б и има RthSB около 7 °C/W, като изолационният слой е с много добра топлопроводност. На фиг. 1в е показано монтирането на гъвкава платка върху алуминиева пластина за получаване на RthSB също около 9 °C/W.
Независимо от вида на платката охлаждането се подобрява с увеличаване на площта й, както и с около 40% чрез вертикално монтиране. И в двата случая това означава намаляване на топлинното съпротивление платка-въздух RthBA=(TB - TA)/PD, т. е. по-малка ТВ при дадена температура ТА на въздуха. При хоризонтално монтиране трябва отделящата топлина повърхност на платката да е отгоре, а LED, съответно, да излъчва надолу. Обикновено платките съдържат само LED, тъй като поставянето върху тях и на управляващия ги блок означава допълнителна разсейвана мощност и нагряване. Сред последните новости са керамичните платки от алуминиев нитрид AlN, осигуряващ много добра топлопроводност.
Един от масово използваните случаи на платка с един LED е показан на фиг. 2, като металните островчета около диода служат и за подобряване на охлаждането. Както вече бе споменато, сравнително рядко част от управляващите схеми се монтират върху платката с LED (фиг. 3).





Радиатори
Те са практически задължителни, тъй като самата платка не може да осигури достатъчно охлаждане на светодиодите. По принцип най-добро охлаждане се постига при непосредствено монтиране на платката върху радиатора, но то се използва рядко. Причината е в необходимостта допиращите се повърхности на платката и радиатора да са много гладки, което значително увеличава цената на механичната обработка. В противен случай при монтажа между миниатюрните неравности остава въздух, който затруднява предаването на топлината. Поради това между двете се поставя топлопроводящ изолационен материал, който в класическия случай е под формата на тънка пластинка (фиг. 4). Чрез механично притискане на платката към радиатора неравностите се запълват. Вместо пластинка се използват силиконови или несиликонови смоли, керамични или метални прахообразни материали. Много добра топлопроводност се осигурява чрез поставяне между радиатора и електрически изолираните платки на тънък слой смола в течно състояние. Немалко производители, обаче, избягват този метод поради необходимостта от предпазни мерки срещу разливане върху съседни повърхности.
Най-новата разновидност са материалите с промяна на фазата, които са твърди при стайна температура и се разтопяват при 50-60 °С, която температура трябва да се осигури при монтирането на платката върху радиатора. Те са с много добра топлопроводност, но с по-висока цена от смолите. Топлинното съпротивление RthBS между платката и мястото на радиатора, където тя е закрепена, е около 1 °C/W, което позволява да се определи температурата на платката TB=TS+RthBSPD при известна температура на радиатора.
За оценка на охлаждащата способност на радиаторите се използва тяхното топлинно съпротивление RthSA, чрез което се определя температурата  TS=TA+RthSAPD на мястото им, където е закрепена платката при определена ТА и мощност PD на LED.
Цялото предаване на топлината от кристала на LED до въздуха е представено на фиг. 5. Тя показва, че между кристала, монтиран в осветително тяло LED и околния въздух има топлинно съпротивление RthJA=RthJB+RthBS+RthSA, чрез което може да се определи температурата на кристала TJ=TA+RthJAPD.
Класическите и все още най-често използвани радиатори са от алуминий с тънки ребра, между които трябва свободно да се движи въздух. Един пример е подобен радиатор с RthSA=1,12 °C/W, предназначен за спотове. С това топлинно съпротивление и монтирането върху него на платка с три LED по 5 W се оказва, че при температура на въздуха 30 °С мястото на закрепване на платката е нагрято до:
TS=30 °C+1,12 °C/Wx15W=46,8 °C.
При топлинно съпротивление на материала между платката и радиатора 1 °C/W платката е с температура:
ТВ=46,8 °С+1 °С/Wx15W=61,8 °C.
И накрая, при LED с топлинно съпротивление 8 °C/W кристалът им е нагрят до:
TJ=61,8 °C+8 °C/Wx5W=102 °C.
Примерен монтаж на тези LED върху радиатора е показан на фиг. 6.
Други разновидности на радиатори са дадени на фиг. 7. Характерни са конфигурациите които вместо ребра имат тънки пръчици, осигуряващи с около 20% по-малко топлинно съпротивление при еднаква площ (фиг. 8).
Плоските радиатори представляват алуминиева пластинка и са с по-малка повърхност от тези с ребра. Това определя по-слабо охлаждане и ограничава използването им за единични LED с мощност до около 2 W. Например пластинката на фиг. 9 при размери 4x4 cm и хоризонтално монтиране има RthBS=36 °C/W, а при вертикално -
32 °C/W (по-малко заради по-лесното движение на въздуха около нея). Често срещано решение е монтажът на повече платки с по един LED върху обща алуминиева плочка, при което се облекчава и замяната им при евентуален ремонт.
Новост са керамичните радиатори, най-често от рубалит (Al2O3) и алунит (AlN), като топлопроводността на първия е с 13%, а на втория с 31% по-добра от тази на алуминия, т.е. при еднакви размери те охлаждат по-добре. Например в спот с керамичен радиатор и мощност 4 W, температурата на LED е с 6 °С по-ниска в сравнение с алуминиев радиатор със същите размери. Към това предимство се прибавя възможността върху радиатора непосредствено да се монтира LED и евентуално други електронни елементи. Вече съществува значително разнообразие на керамични радиатори с различни форми и размери.


› Реклама


Активно охлаждане
Добре познатото от други области охлаждане чрез принудително осигуряване на въздушен поток около радиатора има своите приложения и в LED осветлението. Един от начините за това е използването на класическите вентилатори, но с отчитане на две специфични особености. Първата е неизбежният шум от работата им, който в много случаи, например офиси и жилища, може да се окаже неприятен и дори недопустим. Установено е, че нормалното човешко ухо не долавя звукове с акустично ниво под около 25 dBA, което е горната граница за шума на вентилаторите в LED осветителните тела. Втората особеност е, че обикновено при повреда вентилаторът не може да се сменя - конструкцията на телата прави това трудоемко и по-скъпо от смяната с ново, а в някои случаи тя е невъзможна. Това налага вентилаторите да са с поне същия експлоатационен срок както LED, което определено повишава цената им. Към това би трябвало да се прибави и изискването към мощността на вентилатора, тъй като тя се прибавя към тази на останалите блокове в лампата и намалява предимството на LED от по-малка консумация на електроенергия. Сред новите технически решения са лампите за вътрешно осветление с прецизно създаден път на въздушния поток във вътрешността им. Резултатът е намаляване на температурата на кристала на LED с 10 °С и на акустичния шум със 17 dBA. Нещо повече, при включване на лампата вентилаторът за кратко време се завърта в обратна посока на нормалната за изчистване на праха върху LED (той намалява силата на светлината).
Едновременно с тези и подобни подобрения на вентилаторното охлаждане се появиха нови охладителни системи с ефективно действие, но без вентилатори. Така например, лампата от фиг. 10 (мощност 50 W и експлоатационен срок от 300 000 часа при околна температура 60 °С) е с охлаждащо устройство, в което вибрираща с честота 100-200 Hz диафрагма осигурява необходимия за охлаждане въздушен поток. Създаваният шум е значително по-малък от този на най-тихите вентилатори.
Последният пример е на охладителна система с течност, протичаща под налягане през тънки тръбички, която извлича топлината 100 пъти по-бързо, отколкото алуминиев радиатор. На фиг. 11 е показана 125-ватова LED лампа с такава система, която замества 400-ватови халогенни лампи, има по-голям интензитет на светлината от тях и със 75% по-малко тегло от такава с алуминиев радиатор. Със същата охладителна система е създадена 500-ватова лампа, кристалът в чийто светодиод е нагрят до 53 °С.
Сериозни надежди за по-нататъшно подобряване на охлаждането будят новосъздадените полимери, които при запазване на свойствата си на изолатор имат около 300 пъти по-малко топлинно съпротивление. При това те провеждат топлината само в една посока и при ползването им като радиатори за LED няма да съществува принципната възможност (както при всички други) към светодиода да се предава топлина отвън.


 

Контролиране на температурата
То добива все по-голяма популярност и е особено важно за вътрешни и външни осветителни тела, работещи продължително време или непрекъснато. Целта е при достигане на определена температура на платката с LED, техният ток и съответно мощността и интензитетът на светлината да бъдат намалени, за да не се скъсява експлоатационният срок или за да не се повредят. Това се постига чрез монтиране по един термосензор на всяка платка и свързването им към блок за димиране, който е част от управлението на лампата. Твърде често намаляването на интензитета е в рамките на незабележимите за човешкото око 30%, т. е. за ползвателите на осветлението той реално не се променя.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Интелигентни сградни технологии за постигане на нетни нулеви емисииТехническа статия

Интелигентни сградни технологии за постигане на нетни нулеви емисии

С увеличаване на стремежа за постигане на нетни нулеви емисии до 2050 г., предприемането на мерки вече няма да е ограничено само до големите бизнеси. За много компании това ще наложи повишен фокус върху стратегии за енергиен мениджмънт и по-голяма необходимост от възможности за демонстриране на прогреса спрямо целите.

Димоотводни системиТехническа статия

Димоотводни системи

Ако са планирани правилно, тези системи могат да ограничат достигането на максималната степен на щетите или дори цялостно да ги предотвратят. В зависимост от вида на сградата при оразмеряването им трябва да се вземат предвид редица законодателни принципи, регулации и препоръки.

Фасадни соларни инсталацииТехническа статия

Фасадни соларни инсталации

Фасадните соларни системи осигуряват множество предимства по посока повишаване на енергийната ефективност на модерните сградни конструкции. В допълнение към възможности за гъвкаво генериране на енергия за собственото потребление на сградата, те намаляват нивата на шум от външната среда, допълнително оптимизират изолацията и топлинния профил и позволяват креативно изпълнение на остъкляването. Специални тънкослойни фотоволтаични модули и цялостни соларни инсталации могат да бъдат интегрирани във фасадите както на нови, така и на съществуващи сгради.

Технологични решения за платени паркингиТехническа статия

Технологични решения за платени паркинги

Системата за контрол на достъпа до паркинга е решение, което позволява на собствениците на платени паркинги и гаражи да управляват съответното съоръжение, да ограничават достъпа до него и да реализират приходи. На пазара се предлага разнообразие от различни решения и комбинации за оптимизиране на достъпа до всеки един паркинг.

Противопожарни помпиТехническа статия

Противопожарни помпи

Противопожарните помпи са ключов елемент от системите за пожарогасене в сгради, а от ефективната им работа зависи надеждността на цялата пожарна защита на обекта. Неслучайно често биват определяни като "сърцето" на всяка пожарна инсталация.

Системи за контрол на работното времеТехническа статия

Системи за контрол на работното време

Някои от най-модерните системи използват GPS данни за автоматично регистриране на служителите в зависимост от близостта им до предварително зададена геолокация. Тези системи предлагат няколко ползи – елиминира се рискът служителят да забрави да се регистрира, както и нуждата да се отиде до точно определен терминал.


 

Уеб дизайн от Ей Ем Дизайн. ТД Инсталации. TLL Media © 2023 Всички права запазени. Карта на сайта.

Top