Помпи със слънчево захранване
01.08.2007, Брой 8/2007 / Техническа статия / ВиК оборудване
Помпите със слънчево захранване са подходящи за отдалечени от централната електроснабдителна и водоснабдителна мрежа райони. Захранват се директно от фотоелектрически панел, който преобразува слънчевата енергия в електрическа. За видовете помпи, захранвани от слънчева енергия и техническите им характеристики, разказва Светлана Димитрова
Приложение
Помпите със слънчево захранване са подходящи за снабдяване с вода на отдалечени приложения - било то високопланински вила или бостани с дини в равнината. С тях може да се изпомпва вода от дълбоки кладенци или сондажни отвори, както и да се транспортира от близки реки, поточета и езера. Освен за директно поливане на градини и други насаждения, водата може да се ползва и за домакински нужди или да се съхранява в резервоари до момента на използването й. Тъй като интензивността на слънчевото греене не е еднаква през целия ден, генерираното от фотоелектрическия модул на помпата електрическо напрежение също варира. Дебитът и налягането на помпите са функция от захранването на двигателя, следователно също се променят в зависимост от интензивността на слънчевото греене. Несъмнено, производителността на помпите е най-висока, когато слънцето грее най-ярко. Сутрин, привечер и при облачно време помпите със слънчево захранване транспортират по-малко количество вода. Основното, което ги отличава от стандартните помпи на електрическо захранване, е, че вместо да разчитат на енергия от централната електроенергийна мрежа, помпите със слънчево захранване са енергийно независими.
Фотоелектрическият панел
Както вече споменахме, основен енергиен източник на тези водни помпи е фотоелектрическият панел. Задачата му е да преобразува слънчевата енергия в електрическа. Изграден е от свързани фотоелектрически клетки, изработени основно от полупроводникови материали. Сред най-широко използваните материали за генериране на електрическа енергия от слънцето е кристалният силиций (c-Si). Той оползотворява енергийно целия видим спектър, плюс част от инфрачервения спектър, съдържащи се в слънчевото излъчване. Разработват се и слънчеви клетки, изработени от импрегниран със светлочувствителна боя слой от титаниев диоксид. Когато слънчевата светлина попадне върху полупроводниковия слой, той абсорбира част от нея. Погълнатата енергия води до създаването на свободни електрони. Под действието на създаденото електрическо поле във фотоелектрическата клетка се наблюдава насочено движение на свободните електрони. Мощността на клетката е правопропорционална на генерирания поток.
Останалите компоненти
Освен фотоелектрически панел, неразделна част от помпата е нейният двигател. Приложение намират колекторните постояннотокови двигатели. Те са подходящи за повърхностни помпи със слънчево захранване. Използват се и в някои модели потопяеми помпи. Сред основните недостатъци на този вид двигатели е, че четките се износват постепенно и трябва де се сменят през няколко години.
Друг вид постояннотокови електродвигатели, които се използват във водни помпи със слънчево захранване, са безколекторните. Най-често се срещат в центробежни потопяеми помпи. При тях роторът е постоянен магнит и не изисква четки, което е едно от големите им предимства. Статорът е с намотка, която чрез подходящо управление осигурява въртящо се магнитно поле, увличащо със себе си ротора. При ниска интензивност на слънчевото греене, резултантното напрежение, генерирано от фотоелектрическия панел, се преобразува от двигателя в пропорционално по-ниски обороти на въртене на изходния вал. Именно, тъй като безколекторните електрически двигатели не изискват постоянно като големина напрежение, за да работят, те са много подходящи за помпи със слънчево захранване.
Важен елемент в системата, особено при обемните помпи, е усилвателят на линеен ток, който променя напрежението и тока от фотоелектрическия панел в съответствие с експлоатационните изисквания за работа на помпата. Това осигурява пуск и работа на помпата без опасност от блокиране в условия на ниска интензивност на слънчевото греене. Работата на помпата се управлява от специално електронно средство за контрол, което има за задача да осигури оптимален пуск и стоп на помпата и да не допусне претоварване на машината.
Малко калкулация
Каква е необходимата мощност на слънчевите фотоелектрически панели? Определя се от дебита и напора, които трябва да поддържа помпата. Общовалидно правило при всички подобни помпи е, че мощността на фотоелектрическия панел следва да бъде поне с 20% по-висока от необходимата за работата на съответния тип помпа. При избор на по-голям фотоелектрически панел или такъв с проследяващ слънчевата траектория механизъм, помпата ще работи с максимална производителност през по-голяма част от деня.
Бавно, но ефективно
За да използва слънчевата енергия икономично, помпата би следвало да оползотворява слънчевото греене през целия ден, изразходвайки минимално количество електрическа енергия. На практика това означава да поддържа по-ниски обороти на въртене на работното си колело, т.е. да работи с по-нисък дебит продължително време. За разлика от центробежните помпи, които се отличават с ниска ефективност при работа с ниски обороти, обемните помпи запазват сравнително висока производителност дори и при ниски скорости. Затова голяма част от помпите със слънчево захранване са именно обемни.
Водата, която не се оползотворява, може да се съхранява в резервоар. Ако се използва този вариант, не е лош вариант снабдяването с нивосигнализатор в резервоара, който да указва кога резервоарът е пълен, за да спре помпата. Важен елемент от системата е и батерия, която дава възможност помпата да работи и през нощта.
Въпреки че ефективността на помпите е в пряка зависимост от наличната слънчева енергия, не трябва да се забравят и важни фактори като монтажния наклон на фотоелектрическия панел. Оптималният вариант е наклон, при който директната слънчева светлина пада перпендикулярно върху повърхността на колектора, в този отрязък от деня, когато слънчевото греене е най-голямо. За максимална ефективност фотоелектрическият панел се оборудва със специален механизъм, който следи траекторията на слънцето през целия ден.
Видове помпи
Съществуват основно два типа помпи със слънчево захранване - обемни и центробежни. Те, от своя страна, се разделят на потопяеми и повърхностни помпи. Коя е най-подходяща за конкретния случай, зависи от вида на водоизточника. Дневните нужди от вода пък ще определят дали помпата да е обемна или центробежна.
Обемните помпи обикновено изискват по-малка мощност, за да работят, отколкото центробежните, и за разлика от тях запазват сравнително висока производителност, дори и при облачно време. Подходящи са за изпомпване на сравнително малко количество вода.
Центробежните помпи са подходящи, когато очакваните дневни норми от вода са високи. Недостатък при тях е фактът, че за да работят ефективно, се нуждаят от високи обороти на въртене на работното колело. Ако времето е облачно и фотоелектрическите панели не генерират достатъчно енергия, центробежната помпа вероятно ще стартира, но ефективността й ще е ниска. Затова използването на специален механизъм, следящ траекторията слънцето през целия ден, е особено препоръчително при използване на центробежни помпи.
Потопяеми и повърхностни помпи
Подходящи са за изпомпване на вода от кладенци или други сондажни отвори. Монтират се директно във водоизточника, където могат да бъдат оставени до края на вилния сезон или да бъдат преместени - според моментната нужда. Благодарение на специалната си конструкция, могат да транспортират вода от голяма дълбочина. Някои потопяеми помпи със слънчево захранване изпомпват от 4 до над 200 литра вода за минута.
Повърхностните соларни помпи се използват за изпомпване на вода от поточета, реки или други водоеми, за директно поливане или за транспорта й по тръбопроводи до резервоар, където се съхранява. Монтират се извън водния източник, което определя и принципа им на работа - чрез засмукване.
Възходът на интелигентните асансьори
Оборудвани с усъвършенствани алгоритми, сензори и функции за свързаност, тези асансьори предлагат подобрена ефективност, безопасност и удобство. Концепцията се простира отвъд простото придвижване нагоре и надолу чрез интегриране в цялостната система за автоматизация на сградата, за да се осигури безпроблемно и интуитивно потребителско преживяване.
Валидатори на билети за паркиране
Системите за паркинг валидация могат да функционират по различен начин в зависимост от вида на паркинга, изискванията на съответния обект и местните регулации. Основната им цел обаче не се променя. Обикновено валидация за паркиране предлагат магазини и търговски центрове, фитнес салони, правителствени институции, ресторанти, барове, клубове, болници, банки, образователни институции, хотели, офис сгради и др.
Автоматизирани входно-изходни устройства за платени паркинги
Компонентите в системата за управление на паркинга се определят от наличния бюджет, експлоатацията на съоръжението, целите, рисковете за сигурността и вида на паркинга. В повечето случаи най-добрата практика е устройствата за контрол на достъпа, автоматизираните входно-изходни терминали и софтуерът да се комбинират в зависимост от конкретните нужди на оператора.
Интелигентни сградни технологии за постигане на нетни нулеви емисии
С увеличаване на стремежа за постигане на нетни нулеви емисии до 2050 г., предприемането на мерки вече няма да е ограничено само до големите бизнеси. За много компании това ще наложи повишен фокус върху стратегии за енергиен мениджмънт и по-голяма необходимост от възможности за демонстриране на прогреса спрямо целите.
Димоотводни системи
Ако са планирани правилно, тези системи могат да ограничат достигането на максималната степен на щетите или дори цялостно да ги предотвратят. В зависимост от вида на сградата при оразмеряването им трябва да се вземат предвид редица законодателни принципи, регулации и препоръки.
Фасадни соларни инсталации
Фасадните соларни системи осигуряват множество предимства по посока повишаване на енергийната ефективност на модерните сградни конструкции. В допълнение към възможности за гъвкаво генериране на енергия за собственото потребление на сградата, те намаляват нивата на шум от външната среда, допълнително оптимизират изолацията и топлинния профил и позволяват креативно изпълнение на остъкляването. Специални тънкослойни фотоволтаични модули и цялостни соларни инсталации могат да бъдат интегрирани във фасадите както на нови, така и на съществуващи сгради.