Слънчеви колекторни системи за топла вода

01.04.2008, Брой 3/2008 / Технически статии / Енергийна ефективност

 

Сред най-широко използваните технически решения в съвременните енергийно независими сгради

Безспорно, от различните технологии за оползотворяване на възобновяеми енергийни източници слънчевите системи за производство на топла вода са най-познатите на потребителите.

Натрупали значителна експлоатационна история, слънчевите системи не изискват значителна първоначална инвестиция, а и съвременните модели са високо ефективни и могат да се използват целогодишно. Подходящи са за производство на топла вода, както за битово горещо водоснабдяване, така и за отопление в нискотемпературни инсталации като подово отопление, например. Приложими са както за малки еднофамилни жилища, така и за хотели, басейни и обществени сгради.

Елементи и приложна област

на инсталациите

Слънчевите системи позволяват различни варианти на изпълнение и окомплектоване на инсталацията. Обикновено начинът на окомплектоване на системата зависи преди всичко от климатичните особености на района, в който тя ще бъде инсталирана. Задължителни елементи за всяка слънчева система са слънчев колектор и акумулатор. Освен тях, имайки предвид климатичните условия в нашата страна, към системата могат да се включат допълнителен източник на енергия, топлообменник и помпа.





В слънчевите инсталации, предназначени за бита, предимно се използват три вида колектори - плоски панели, колектори с вакуумни тръби и вакуумни колектори с термотръби. Какъв вид колектор ще се използва в дадена инсталация се определя от годишната използваемост на системата.

В приложения, при които системата е предвидена за сезонна работа, се препоръчва използването на плоски слънчеви колектори. Една от причините е относително ниската себестойност на самите колектори, а от там и на слънчевите инсталации, изградени на базата им. За слънчеви инсталации, предназначени за целогодишна работа, специалистите препоръчват използването на колектори с вакуумни тръби или вакуумни колектори с термотръби. Тези колектори са със сравнително по-сложна конструкция в сравнение с плоските колектори, както и с по-висока ефективност, благодарение на вакуума, който се поддържа в тръбите, но съответно са и с по-висока себестойност. Производителите заявяват, че вакуумните колектори с термотръби могат да работят и при минусови температури, ако има слънчево греене.

Директни и индиректни слънчеви

системи




Съществуват различни критерии за класификация на слънчевите системи за производство на топла вода. В зависимост от начина на циркулация на водата през колектора, се определят като системи с естествена циркулация, известни още като термосифонни или пасивни системи, и на системи с принудителна циркулация, наричани активни системи.

Съответно, всяка от описаните системи би могла да бъде директна или индиректна в зависимост от броя на циркулационните кръгове. Директни са системите, в които в колекторите и мрежата на консуматора се използва един и същ флуид. Предназначени са предимно за малки инсталации в еднофамилни къщи, вили или семейни плувни басейни със сезонна експлоатация. При индиректните системи двата кръга на топлоносителя - в колектора и този в консуматора, са разграничени. За осъществяване на топлообмена между двата потока в системата допълнително се вгражда топлообменен апарат.

Системи с естествена

и принудителна циркулация

В системите с естествена циркулация се разчита на гравитационните сили. Циркулацията в кръга се осъществява, благодарение на разликата в обемните маси на водата, имаща различна температура. В този случай акумулаторният съд задължително се поставя над колекторите. При загряването на водата в слънчевия колектор, нейната плътност намалява и стартира процес на циркулация. Директните системи с естествена циркулация са подходящи за загряване на вода за битови нужди предимно през летните месеци и то в ограничени количества, поради което използването им се препоръчва предимно във вили и малки еднофамилни къщи.

При системите с принудителна циркулация движението на топлоносителя в циркулационните кръгове е следствие от работата на включена в системата помпа. Обикновено, включването на помпата е чрез термостат, контролиращ температурата на изхода от колекторите и на дъното на акумулатора. За предотвратяване на обратната циркулация при охлаждане на водата, причинено от наблагоприятни атмосферни условия, в системата се предвижда поставяне на възвратна клапа. При тези системи като допълнителен източник на енергия може да се използват котел на газ, течно или твърдо гориво, електрически нагреватели или термопомпи и др. Топлообменникът между двата кръга може да бъде вграден в акумулатора или да се монтира извън него. Подаването на топлина от допълнителния източник на енергия се осъществява чрез вграден в акумулатора топлообменник, поставен в долната или горната част на акумулатора. Могат също така да се използват скоростен или обемен топлообменник, монтирани на пътя на топлоносителя към консуматора.

Термосифонните системи


 

са широко разпространени

Слънчевите системи с естествена циркулация, наричани термосифонни, са сред най-разпространения вид слънчеви инсталации. Причините могат да се търсят в ниската им себестойност, съчетана с опростена конструкция и лесен и бърз монтаж. Поради спецификата в работата им, приложимостта на системите с естествена циркулация се обуславя и от издръжливостта на покрива, върху който се монтира системата. Тъй като при тях топлоносителят циркулира между отделните елементи на системата, благодарение на гравитационните сили, за да се осигури безпроблемното й функциониране, е необходимо най-ниската точка на акумулаторния съд да бъде над най-високата точка на слънчевия колектор и на отстояние, не по-голямо от 3-4 м.

Според периода от годината, през който могат да се използват, и спецификата на водата в съответния регион, термосифонните слънчеви системи могат да бъдат изградени като директни или индиректни.

Директни системи с естествена

циркулация

Директните слънчеви инсталации с естествена циркулация са предназначени предимно за производство на битова гореща вода, загрявана директно от колектора. Основните им елементи са слънчев колектор, акумулаторен съд и тръбопроводна система. Необходимо условие за правилната им експлоатация е използването на по-мека и по възможност чиста вода, тъй като могат да се натрупват отлагания и замърсявания в колектора, акумулатора или тръбите, които да намалят ефективността на системата. При този вид системи загрятата вода се издига към горната част на колектора и постъпва в акумулатора. В него се наблюдава разслоение на водата, по-топлата се издига в горната му част, а по-студената остава в долната. При наличие на достатъчно слънчево греене, в колекторния контур се осъществява постоянна циркулация, скоростта и интензивността на която зависят именно от силата на слънчевата радиация. Водата за консумация се подава от най-високите точки на акумулатора. Тя се съхранява в него до момента на използването й. С цел ограничаване на топлинните загуби е необходимо резервоарът да бъде с добра топлоизолация.

Директните слънчеви инсталации с естествена циркулация се препоръчват за сезонно използване или в региони, където няма минусови температури през цялата година, а водата е мека.

Индиректни системи

с естествена циркулация

Работата на индиректните системи е аналогична с тази на директните, с тази разлика, че при тях има отделен затворен колекторен контур, състоящ се от слънчев колектор, тръбопровод и топлообменник в акумулаторния съд. В колекторния контур циркулира незамръзваща течност, а не директно използваната вода, което прави системата подходяща за използване през цялата година.

След загряване на течността в колектора, тя преминава през монтирания в акумулаторния съд топлообменник. Отдава топлината си на съдържащата се вътре вода, след което изтича обратно в колектора. Този тип системи се препоръчват за използване в райони с твърда вода или вода с механични примеси, за да се избегне опасността от отлагания и корозия в системата.

Допълнителен елемент при двуконтурните системи е мембранен разширителен съд, свързан чрез отделен тръбопровод към колекторния контур. Задачата му е да поеме разширяващия се обем на топлоносителя при повишаване на температурата и съответно на налягането в инсталацията. Разширителният съд обикновено представлява херметически затворен метален съд, в който е вградена еластична мембрана. Мембраната разделя вътрешното му пространството. В едната част е газовата възглавница (азот, въздух), а в другата - топлоносителят. При разширение газовата възглавница се свива, което е съпроводено с изменение на формата и положението на мембраната, и компенсиране на налягането в системата. Всеки такъв съд се комплектова и с предпазен вентил, настроен на максимално допустимото налягане.

Продължава в брой 4
на сп. Технологичен дом



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Сигнално, аварийно и евакуационно осветлениеТехнически статии

Сигнално, аварийно и евакуационно осветление

Функциите на надежден източник на светлина, указващ посоката за евакуация, или на маркировка, предупреждаваща за наличие на препятствие, поставя сигналното, аварийното и евакуационното осветление сред критично важните компоненти на системите за безопасност в обществените сгради.

Газови сензори и сигнализатори за жилищни, обществени и търговски сградиТехнически статии

Газови сензори и сигнализатори за жилищни, обществени и търговски сгради

На пазара се предлага богата гама от продукти за следене например на концентрацията на въглероден оксид, изпускан от ауспусите на автомобили в закрити паркинги и гаражи, нивата на въглероден диоксид в аудитории и конферентни зали, течовете на хладилни агенти и запалими газове от тръбопроводи и оборудване. Решенията варират от самостоятелни до цялостно свързани към системите за сградна автоматизация, осигуряващи рентабилно и надеждно съответствие с регулаторните изисквания.

Енергийно ефективни климатични камериТехнически статии

Енергийно ефективни климатични камери

Климатичните камери са ключов елемент от сградните ОВК системи в битови, търговски и промишлени приложения, а ефективната им работа е един от най-важните аспекти по отношение на рентабилната им експлоатация. Постигането на оптимална енергийна ефективност при оборудването от този тип е сериозно предизвикателство за мениджърите на сградния фонд и е въпрос на комплексна комбинация от адекватното му проектиране и оразмеряване и правилното му използване.

UV-C лампи за офиси и обществени сградиТехнически статии

UV-C лампи за офиси и обществени сгради

Дезинфекцията с UV-C светлина е изключително ефективно решение, което може лесно да бъде вградено в съществуващата ОВК система на обществени и офис сгради, да се включи към интериора като самостоятелно модулно тяло или система от осветители, подходящо проектирана така, че да не представлява риск за здравето на служителите.

Интелигентни технологии за видеонаблюдениеТехнически статии

Интелигентни технологии за видеонаблюдение

От традиционно решение в сферата на сигурността, усъвършенстваните технологии за обработка и анализ на разнородни масиви от информация надграждат функционалността на съвременните системи за видеонаблюдение до мощен маркетингов инструмент, който носи огромни ползи и за бизнеса.

Вентилационни системи за подземни паркинги и гаражиТехнически статии

Вентилационни системи за подземни паркинги и гаражи

Системите за импулсна вентилация предлагат съществена възможност за спестяване на пространство в сравнение с конвенционалните решения с въздуховоди, както и огромен потенциал за енергийни спестявания благодарение на факта, че за функционирането им е необходим малък брой вентилатори, разположени стратегически на територията на паркинга.


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2021 Всички права запазени. Карта на сайта.

Top