Слънчеви лампи

01.07.2007, Брой 7/2007 / Технически статии / Осветление

 

Фотоелектрически панели преобразуват енергията на слънцето в електрическа

Да, има такива лампи. Захранват се от слънцето, за да произвеждат светлина. Най-често биха могли да се видят в градината. Освен че спестяват от месечните сметки за електричество, слънчевите, наричани още фотоелектрически, осветителни тела не изискват изпълнението на сложни монтажни схеми - за да работят, не се нуждаят от полагане на кабели. Как работят и какви интериорни възможности предлагат разяснява Светлана Димитрова


› Реклама



Фотоелектрическите осветителни тела намират приложение предимно в осветяването на дворове или други открити пространства. Съществуват и специални модели за басейни, а ако сте любител на пътешествията и нощуването на открито, може да се снабдите и с преносим фотоелектрически светлинен източник.

Подходящи са за места, в които трудно се използва друг тип осветление. Пък и не само. Мощността им е достатъчна, за да осветяват пътеките, стълбите или други възможни препятствия в градината. Захранват се от слънчевата светлина, която акумулират през деня. Преобразуването й в електричество, става възможно, благодарение на фотоелектрическия панел, който е важна част от конструкцията им. Фотоелектрически или фотоволтаичен е термин, включващ думите „photo” - светлина и „voltaic” - от името на един от пионерите на електричеството - Алесандро Волта.

Устройство на слънчевата лампа




Фотоелектрическите осветителни тела се състоят от пластмасово или метално тяло, върху което е монтиран слънчев модул или панел, акумулаторна батерия, малко контролно табло, светлинен източник, например LED или халогенна лампа. Конструкцията на фотоелектрическите лампи често включва и фотосензор, който следи осветеността навън и когато тя падне под определено ниво, осветителят се включва автоматично. Разбира се, не всички предлагани на пазара слънчеви лампи се включват/изключват автоматично.

Слънчевият модул е изграден от свързани фотоелектрически клетки. Лампите са свободностоящи или имат основа, която се забива в земята. Част от предлаганите модули разполагат с подходящи накрайници за монтаж например на стена. Освен стандартните модели можете да срещнете и доста сполучливи декоративни изпълнения под формата на цветя, животни, джуджета, камъни и други, всички с фотоелектрически модул.

Тайната на преобразуването


 

Фотоелектрическите слънчеви клетки, които преобразуват слънчевата енергия в електричество, се изработват основно от полупроводникови материали. Сред най-широко използваните материали за генериране на електрическа енергия от Слънцето е кристалният силиций (c-Si). Той оползотворява енергийно целия видим спектър, плюс част от инфрачервения спектър, съдържащи се в слънчевото излъчване. За производството на фотоелектрически клетки се използват и елементи от III и V групи на периодичната система. Разработват се и слънчеви клетки, изработени от импрегниран със светлочувствителна боя слой от титаниев диоксид.

Когато слънчевата светлина попадне върху полупроводниковия слой, той абсорбира част от нея. Погълнатата енергия води до създаването на свободни електрони. Под действието на създаденото електрическо поле във фотоелектрическата клетка се наблюдава насочено движение на свободните електрони. Мощността на клетката е правопропорционална на генерирания поток. Фотоелектрическите системи биха могли да работят както самостоятелно, така и като част от електрическата мрежа.

Трезва пресметливост

Единичната фотоелектрическа клетка би могла да генерира напрежение от максимум 0.45 V и големина на тока, зависеща от размера на клетката и енергията, съдържаща се в слънчевото греене в конкретния момент. Обикновено фотоелектрическите панели на слънчевите лампи съдържат поне четири свързани клетки, които генерират напрежение от 1,8 V и около 100 mA ток при силна слънчева светлина.

Например, с напълно заредена акумулаторна батерия един фотоелектричен модул би могъл да захранва LED осветител, светлината от който е със сила не по-голяма от тази на свещ, за период до 15 часа. Това не е твърде много, но съгласете се, че в плътния нощен мрак е достатъчно да освети пътя към дома. Всъщност, гледайте да се приберете по-рано, тъй като интензитетът на лампата не е еднакъв през цялата нощ. Лампата свети ярко през първите часове, след което светлината й постепенно започва да намалява.

И все пак тя... свети

Въпреки че в редица аспекти фотоелектрическите лампи не могат да се сравняват с електрическите лампи с мрежово захранване, те могат да бъдат удачно решение. Възможно е да ги поставите навсякъде, единственото условие е фотоелектрическият модул да е изложен на пряка слънчева светлина през целия ден, далеч от сенките. Работата им е в пряка зависимост от времето. При облачно и дъждовно време или през зимата не може да имате същите очаквания, както през дългите слънчеви летни дни. Макар че с усъвършенстването на технологията фотоелектрическите клетки стават все “по-чувствителни” и преобразуват енергийно все по-голяма част от слънчевата енергия, прокрадваща се дори през облаците. С цел осигуряването на безотказна работа на икономичната градинска лампа е необходимо батерията да се сменя поне веднъж годишно.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Системи за управление на опасноститеТехнически статии

Системи за управление на опасностите

С нарастващата автоматизация на сградните системи и услуги и тяхното масово консолидиране в единни платформи за сграден мениджмънт все по-популярни стават комбинираните решения за контрол на рисковете, познати като системи за управление на опасностите (Danger management systems, DMS)

Съвременни тенденции в интелигентното сградно осветлениеТехнически статии

Съвременни тенденции в интелигентното сградно осветление

Решенията в областта на интелигентното осветление непрекъснато се развиват и еволюират в синхрон с изискванията на устройствата и приложенията от най-ново поколение, разработени за непрекъснато разрастващата се IoT (Internet of Things) екосистема

Решения за воден мониторинг в интелигентни домовеТехнически статии

Решения за воден мониторинг в интелигентни домове

Водният мениджмънт в един умен дом се осъществява с помощта на различни типове сензори и системи, които измерват потреблението, регистрират течове, проверяват качеството на питейната вода и помагат за подобряване качеството на живот, намаляване на сметките и предотвратяване на аварийни ситуации, застрашаващи безопасността на обитателите и сградните активи

Оптимизиране на системи за БГВ с кондензни котлиТехнически статии

Оптимизиране на системи за БГВ с кондензни котли

Традиционните котли и подгревателни системи са проектирани да поддържат високи температури на горещата вода, но новостите при технологиите в сферата на кондензната техника позволяват постигане на повишена ефективност чрез по-ниски температури на водата в комбинация с кондензация

AI технологии в сградната автоматизацияТехнически статии

AI технологии в сградната автоматизация

В ерата на автоматизацията сградните системи и услуги стават все по-интелигентни, свързани и интегрирани. Технологии като Internet of Things (IoT) и изкуственият интелект (Artificial Intelligence, AI) с помощта на сензори, инструменти за машинно обучение и комплексни алгоритми задават още по-високи стандарти за взаимодействие между потребителите, свързаните устройства и системите

Новости при домофонните системиТехнически статии

Новости при домофонните системи

Домофонните системи са сред пазарните сегменти, които търпят динамично технологично развитие с популяризирането на концепцията за интелигентни домове и сгради.

Съвременните домофони разполагат с множество допълнителни функции, включително възможности за осъществяване на видеовръзка, отдалечен мониторинг посредством смартфон, обмен на данни между отделните обитатели на един жилищен комплекс и т. н.


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2019 Всички права запазени. Карта на сайта.

Top