Технически средства за мълниезащити

01.11.2009, Брой 9/2009 / Технически статии / Електроинсталации

 

Защитата на сгради и съоръжения от попадения на мълнии е не само нормативно задължителна, но и жизнено необходима

Мълниезащитите са важно техническо средство, гарантиращо сигурността на хората и материалните активи в сградите. Пораженията, които е възможно да нанесе удар от мълния, вече далеч не се ограничават до физически щети на обектите.

Поради масовата електронизация във всички сфери на живота, атмосферните и комутационните пренапрежения могат да парализират дейността в офисните, административните и търговските сгради и т.н., като нанесат финансови щети и загуба на ценна информация. В настоящата статия са описани накратко най-разпространените технически средства за предпазване на обекти (сгради, съоръжения и открити пространства) от директни попадения и вторичните въздействия на мълнии и характеристиките им.


› Реклама



Компоненти на мълниеотводна инсталация
Най-масово използваните средства за защита от пряко попадане на мълнии са мълниеотводите. Функцията им е да привличат върху себе си мълнията, за да не попадне тя върху защитавания обект. За ефективна защита трябва върхът на мълниеприемния прът да е поне с два метра над най-високата част на защитаваната площ (включително и от монтирана върху нея антена). Обикновено прътовете се изработват от мед, алуминий или неръждаема стомана.
Освен мълниеприемник, всяка мълниеотводна инсталация включва още токоотводен проводник за връзката му със земята и самото свързване към нея, познато като заземяване. Токоотводните проводници обикновено са от поцинкована стомана, мед или алуминий. Когато атмосферните условия се явяват предпоставка за силна корозия (например край морето), е по-добре да се използва неръждаема стомана. Не се препоръчва приложението на многожилен проводник. Най-добре е той да има подходяща високоволтова изолация, за да не прескачат искри между него и съседни метални части.
Заземяването се реализира чрез вертикални заземителни пръти и хоризонтални шини от стомана или мед. Всеки токоотводен проводник задължително има заземяване, осигуряващо между него и земята електрическо съпротивление, не по-голямо от 20 ома. Лошото заземяване се характеризира с по-голямо съпротивление и върху него токът на мълнията може да създаде опасно голямо напрежение.




Определяне на мълниезащитната зона
Най-важната характеристика на всеки мълниеотвод е зоната, която той защитава. Тя зависи от височината му над земната повърхност (по-висок мълниеотвод - по-широка зона) и от максималното разстояние до върха му, необходимо за възникване на мълния (по-голямо разстояние - по-голяма зона). Последното обаче зависи не само от елементите на мълниеотводната инсталация, но и от атмосферните условия, поради което зоната на защита може да се определи само приблизително.
Мълниезащитната зона на прътовите мълниеприемници представлява конус около тях с връх в горния край на приемника и радиус на основата r. При височина h на пръта големината на r за мълниезащитна зона тип А е приблизително 1,1h, а за тип Б - приблизително 1,5h. При необходимост от голяма площ на зоната се поставят два или повече мълниеприемника. При това когато зоните им на защита се допират, всяка от тях се определя, все едно че приемникът е самостоятелен.
Увеличаването на мълниезащитната зона на прътовите мълниеприемници чрез увеличаване на височината им се ограничава от механичната им якост. Тези ограничения са значително по-малки при


 

Мълниеприемниците с изпреварващо действие
Благодарение на своята конструкция, те йонизират въздуха над себе си, като каналът в него се създава по-рано (затова наименованието им е с “изпреварващо действие”) и срещата му с мълнията става на значителна височина над върха им. Все едно, че мълниеприемникът е станал по-висок и съответно зоната му на мълниезащита се е разширила - нейният радиус нараства поне няколко пъти в сравнение с конвенционален прътов мълниеприемник със същата височина. Колкото времето на изпреварване DT (някои производители го наричат време за формиране на изпреварващата поточна емисия) е по-голямо, толкова по-широка става зоната на мълниезащита. Типични стойности на това време са няколко десетки микросекунди, като то се дава във вид на параметър в някои каталози. Например, при скорост на мълнията 80 km/s за време DT = 50 ms тя изминава 4 m, колкото е и ефективното нарастване на височината на мълниеприемника.
За тези приемници са в сила 4 нива (или категории) на защита - ниво I, в което вероятността да не попадне мълния е над 98%, ниво II - между 95 и 98%, ниво III - от 80 до 95% и ниво IV - под 80%. Често в каталозите се дава таблица с радиуса на защита в зависимост от височината на монтиране на приемника и нивото на защита. Например, при височина 2 m радиусът за ниво I е 31 m, за ниво II - 38 m и за ниво III - 43 m.

Вторична защита от мълнии
Мълниеприемникът има способността да предпази сградата, върху която е инсталиран, от сериозни щети. Създаваните напрежения в околните мрежи и уреди при протичането на тока от мълнията през проводника за заземяване обаче, налагат използването на допълнителни защитни средства - така наречената вторична защита. Различават се два основни типа елементи за вторична защита, в зависимост от принципа на действие и начина на свързване към предпазвания уред - за защита от свръхнапрежения и за енергийна защита. Елементите за защита от свръхнапрежения не позволяват напрежението между две точки да надхвърли определена безопасна стойност. Когато напрежението между защитаваните точки е нормално, елементът за защита не оказва никакво влияние. При повишаване на напрежението в мрежата над определена стойност (което може да е предизвикано не само от падане на мълния), наречено свръхнапрежение, елементът много бързо се задейства и установява неизменно и безопасно напрежение между двете точки и съответно предпазвания уред. Същевременно през елемента е възможно да протече много голям ток (в някои случаи над 10 000 A), но само за много краткото време на наличие на свръхнапрежението.
В зависимост от начина на осъществяване на описаното действие съществуват четири вида елементи за вторична защита от напрежение
Първият и все още най-масово използван сред тях е въздушният разрядник. Той съдържа две метални остриета, разположени на известно разстояние и насочени едно срещу друго. Ако между остриетата възникне напрежение над определена стойност, във въздуха между тях се получава електрически разряд и протича голям ток (електрическа искра). Така напрежението между остриетата намалява до много малка и безопасна стойност. След като свръхнапрежението изчезне, пробивът се прекратява и разрядникът е готов за следващата защита. Напрежението за възникване на разряда зависи от разстоянието между пластинките (по-голямо разстояние - по-голямо напрежение), но е не по-малко от 500 V.
Вторият вид са газоразрядните елементи. Те имат подобна структура и действие както въздушните разрядници, но електродите им са поставени в херметически затворена керамична капсула, изпълнена с инертен газ с ниско налягане. Той позволява разрядът да възникне при по-ниски напрежения. Токът през задействания елемент може да достигне до десетина хиляди ампера, но за не повече от няколко стотни от секундата.
Третият вид елементи са металоокисните варистори (МОV). Наименованието им показва, че те съдържат метални окиси - най-голямо е количеството на цинковия окис, към който са прибавени малки количества други окиси (напр. бисмутов, кобалтов и магнезиев). За разлика от предните два вида елементи, при варисторите не възниква електрически разряд. При достигане на определено напрежение, елементът започва да променя съпротивлението си, поради което напрежението между защитаваните точки остава практически неизменно. Стойностите на това напрежение са между 100 и 1000 V, т.е. много по-големи в сравнение с предните два елемента. Максимално допустимият ток през елемента е малко по-малък (до 6-7 хил. A). Основно предимство на варисторите е осигуряване на много сигурна защита, тъй като времето на задействане (времето на включване на защитата) е значително по-малко от това на предните два елемента - много под една милионна част от секундата.
Последният тип са защитните диоди. Те са с най-бърза реакция. Времето на задействането им трудно се побира в мащабите, с които сме свикнали - то е много по-малко от една милиардна от секундата. Нещо повече, след задействането между защитаваните точки се установява напрежение около 1 V, което е предимство спрямо останалите елементи. Основно ограничение за приложимостта на тези елементи е, че токът през тях едва достига 1000 A, и то само в някои специални типове. При други той е едва няколко десетки A. Практически това означава невъзможност от използването им за ограничаване на големи свръхнапрежения.



 

 

ОЩЕ ПУБЛИКАЦИИ ПО ТЕМАТА

Сигнално, аварийно и евакуационно осветлениеТехнически статии

Сигнално, аварийно и евакуационно осветление

Функциите на надежден източник на светлина, указващ посоката за евакуация, или на маркировка, предупреждаваща за наличие на препятствие, поставя сигналното, аварийното и евакуационното осветление сред критично важните компоненти на системите за безопасност в обществените сгради.

Газови сензори и сигнализатори за жилищни, обществени и търговски сградиТехнически статии

Газови сензори и сигнализатори за жилищни, обществени и търговски сгради

На пазара се предлага богата гама от продукти за следене например на концентрацията на въглероден оксид, изпускан от ауспусите на автомобили в закрити паркинги и гаражи, нивата на въглероден диоксид в аудитории и конферентни зали, течовете на хладилни агенти и запалими газове от тръбопроводи и оборудване. Решенията варират от самостоятелни до цялостно свързани към системите за сградна автоматизация, осигуряващи рентабилно и надеждно съответствие с регулаторните изисквания.

Енергийно ефективни климатични камериТехнически статии

Енергийно ефективни климатични камери

Климатичните камери са ключов елемент от сградните ОВК системи в битови, търговски и промишлени приложения, а ефективната им работа е един от най-важните аспекти по отношение на рентабилната им експлоатация. Постигането на оптимална енергийна ефективност при оборудването от този тип е сериозно предизвикателство за мениджърите на сградния фонд и е въпрос на комплексна комбинация от адекватното му проектиране и оразмеряване и правилното му използване.

UV-C лампи за офиси и обществени сградиТехнически статии

UV-C лампи за офиси и обществени сгради

Дезинфекцията с UV-C светлина е изключително ефективно решение, което може лесно да бъде вградено в съществуващата ОВК система на обществени и офис сгради, да се включи към интериора като самостоятелно модулно тяло или система от осветители, подходящо проектирана така, че да не представлява риск за здравето на служителите.

Интелигентни технологии за видеонаблюдениеТехнически статии

Интелигентни технологии за видеонаблюдение

От традиционно решение в сферата на сигурността, усъвършенстваните технологии за обработка и анализ на разнородни масиви от информация надграждат функционалността на съвременните системи за видеонаблюдение до мощен маркетингов инструмент, който носи огромни ползи и за бизнеса.

Вентилационни системи за подземни паркинги и гаражиТехнически статии

Вентилационни системи за подземни паркинги и гаражи

Системите за импулсна вентилация предлагат съществена възможност за спестяване на пространство в сравнение с конвенционалните решения с въздуховоди, както и огромен потенциал за енергийни спестявания благодарение на факта, че за функционирането им е необходим малък брой вентилатори, разположени стратегически на територията на паркинга.


 

Уеб дизайн от Ей Ем Дизайн. Списание ТД Инсталации. TLL Media © 2021 Всички права запазени. Карта на сайта.

Top